ANNAPURNA ANNAPURNA CHALLENGE

Modeling a large polymetallic copper deposit in northern Chile.

WHAT WAS THE CHALLENGE?

- Propose an alternative geological model using Indicator Kriging
- > Model 5 elements of interest while preserving their statistical relationships
- Resource classification
- Define optimal position for new drillholes

WHAT IS THE "ANNAPURNA CHALLENGE"?

To rapidly implement a resource modeling workflow that solves a customer's problem

SPEED

ADVANCED ALGORITHMS

MULTIPLE ITERATIONS

RESULTS

- 20 univariate models for all elements:
 40M blocks each, 250 simulations
- > 50 multivariate simulations with imputation of incomplete data
- > Evaluation of 3 capping strategies for Au
- Recommendation of optimal positioning for new drillholes

- Change-of-support analysis: 5 models with 160M blocks each, 250 simulations in total
- Resource classification

Geological modeling using indicator kriging and variable direction fields

A FEW NUMBERS

> 60 billion

TOTAL BLOCKS ESTIMATED AND SIMULATED DURING THE PROJECT

> Consolidated Model

40M BLOCKS 59K COMPOSITES 21 DOMAINS

COMPUTATION TIMES

> 13 minutes ESTIMATION TIME

> Univariate Simulation

40M BLOCKS,21 DOMAINS,

50 REALIZATIONS 1:49H

> Multivariate Simulation

160M BLOCKS, 21 DOMAINS,

50 REALIZATIONS 2:40H

CLIENT FEEDBACK

This new and promising tool provides modelers and estimators with the ability to obtain results quickly and efficiently. Its powerful data processing capacity allowed us to quickly and flexibly perform analyses, therefore optimizing our workflows .

ESTIMATION

Comparison of different estimation methods

MULTIVARIATE SIMULATION

Preserving statistical relationships

OPTIMAL DRILLHOLE POSITIONING RECOMMENDATION

Prioritizing high-grade and high-uncertainty zones

RESOURCE CLASSIFICATION

Using Drillhole Spacing Analysis

INDICATOR KRIGING + LVA

Probability of encountering geological units in space

